Earth’s “Great Oxidation Event” was spread over 200 million years, according to recent discoveries.
New research highlights the Great Oxidation Event’s complexity, revealing that the rise of atmospheric and oceanic oxygen was a dynamic process lasting over 200 million years, influenced by geological and biological factors critical for life’s evolution.
The Great Oxidation Event
About 2.5 billion years ago, free oxygen, or O2, first started to accumulate to meaningful levels in Earth’s atmosphere, setting the stage for the rise of complex life on our evolving planet.
Scientists refers to this phenomenon as the Great Oxidation Event, or GOE for short. But the initial accumulation of O2 on Earth was not nearly as straightforward as that moniker suggests, according to new research led by a University of Utah geochemist.
This “event” lasted at least 200 million years. And tracking the accumulation of O2 in the oceans has been very difficult until now, said Chadlin Ostrander, an assistant professor in the Department of Geology & Geophysics.
“Emerging data suggest that the initial rise of O2 in Earth’s atmosphere was dynamic, unfolding in fits-and-starts until perhaps 2.2. billion years ago,” said Ostrander, lead author on the study published on June 12 in the journal Nature. “Our data validate this hypothesis, even going one step further by extending these dynamics to the ocean.”
Insights From Marine Shales
His international research team, which is supported by the 2021 study, their team of scientists discovered that O2 did not become a permanent part of the atmosphere until about 200 million years after the global oxygenation process began, much later than previously thought.
Atmospheric and Oceanic Oxygen Fluctuations
The “smoking gun” evidence of an anoxic atmosphere is the presence of rare, mass-independent sulfur isotope signatures in sedimentary records before the GOE. Very few processes on Earth can generate these sulfur isotope signatures, and from what is known their preservation in the rock record almost certainly requires an absence of atmospheric O2.
For the first half of Earth’s existence, its atmosphere and oceans were largely devoid of O2. This gas was being produced by cyanobacteria in the ocean before the GOE, it seems, but in these early days the O2 was rapidly destroyed in reactions with exposed minerals and volcanic gasses. Poulton, Bekker and colleagues discovered that the rare sulfur isotope signatures disappear but then reappear, suggesting multiple O2 rises and falls in the atmosphere during the GOE. This was no single ‘event.’
Challenges in Earth’s Oxygenation
“Earth wasn’t ready to be oxygenated when oxygen starts to be produced. Earth needed time to evolve biologically, geologically and chemically to be conducive to oxygenation,” Ostrander said. “It’s like a teeter totter. You have oxygen production, but you have so much oxygen destruction, nothing’s happening. We’re still trying to figure out when we’ve completely tipped the scales and Earth could not go backward to an anoxic atmosphere.”
Today, O2 accounts for 21% of the atmosphere, by weight, second only to nitrogen. But following the GOE, oxygen remained a very small component of the atmosphere for hundreds of millions of years.
Advanced Isotopic Analysis Techniques
To track the presence of O2 in the ocean during the GOE, the research team relied on Ostrander’s expertise with stable thallium isotopes.
Isotopes are atoms of the same element that have an unequal number of neutrons, giving them slightly different weights. Ratios of a particular element’s isotopes have powered discoveries in archaeology, geochemistry and many other fields.
Thallium Isotopes and Oxygen Indicators
Advances in mass spectrometry have enabled scientists to accurately analyze isotope ratios for elements farther and farther down the Periodic Table, such as thallium. Luckily for Ostrander and his team, thallium isotope ratios are sensitive to manganese oxide burial on the seafloor, a process that requires O2 in seawater. The team examined thallium isotopes in the same marine shales recently shown to track atmospheric O2 fluctuations during the GOE with rare sulfur isotopes.
In the shales, Ostrander and his team found noticeable enrichments in the lighter-mass thallium isotope (203Tl), a pattern best explained by seafloor manganese oxide burial, and hence accumulation of O2 in seawater. These enrichments were found in the same samples lacking the rare sulfur isotope signatures, and hence when the atmosphere was no longer anoxic. The icing on the cake: the 203Tl enrichments disappear when the rare sulfur isotope signatures return. These findings were corroborated by redox-sensitive element enrichments, a more classical tool for tracking changes in ancient O2.
“When sulfur isotopes say the atmosphere became oxygenated, thallium isotopes say that the oceans became oxygenated. And when the sulfur isotopes say the atmosphere flipped back to anoxic again, the thallium isotopes say the same for the ocean,” Ostrander said. “So the atmosphere and ocean were becoming oxygenated and deoxygenated together. This is new and cool information for those interested in ancient Earth.”
Reference: “Onset of coupled atmosphere–ocean oxygenation 2.3 billion years ago” by Chadlin M. Ostrander, Andy W. Heard, Yunchao Shu, Andrey Bekker, Simon W. Poulton, Kasper P. Olesen and Sune G. Nielsen, 12 June 2024, Nature.
DOI: 10.1038/s41586-024-07551-5
Discussion about this post