Columbia researchers found that bacteria create temporary, free-floating genes outside their genome, a breakthrough that could reshape genetics and gene therapy.
Since the genetic code was first deciphered in the 1960s, our genes have appeared like an open book. By interpreting our chromosomes as linear sequences of letters, akin to sentences in a novel, we can identify the genes within our genome and understand how changes in a gene’s code influence health.
This linear rule of life was thought to govern all forms of life—from humans down to bacteria.
But a new study by Columbia University researchers shows that bacteria break that rule and can create free-floating and ephemeral genes, raising the possibility that similar genes exist outside of our own genome.
“What this discovery upends is the notion that the chromosome has the complete set of instructions that cells use to produce proteins,” says Samuel Sternberg, associate professor of biochemistry & molecular biology at the Vagelos College of Physicians and Surgeons, who led the research with Stephen Tang, an MD/PhD student at the medical school.
“We now know that, at least in bacteria, there can be other instructions not preserved in the genome that are nonetheless essential for cell survival.”
“Astonishing” and “alien biology”
The scientific reaction had already made news a few months ago when the paper first appeared as a preprint. In a Nature News article, scientists called the discovery “alien biology,” “astonishing,” and “shocking.”
“It repeatedly left us in disbelief,” Tang says, “and we went from doubt to amazement as the mechanism gradually came into view.”
Bacteria and their viruses have been locked in a battle for eons, as viruses try to inject their DOI: 10.1126/science.adq0876
The research was supported by the NIH (Medical Scientist Training Program grant T32GM145440, Ruth L. Kirchstein Individual Predoctoral Fellowship F30AI183830, R35GM124633, R01AG071869, and R01HG012216); the National Science Foundation (Graduate Research Fellowship and Award 2224211); a Human Frontier Science Program postdoctoral fellowship (LT001117/2021-C); the Schaefer Research Scholars Program; the Hirschl Family Trust, a Pew Biomedical Scholarship, an Irma T. Hirschl Career Scientist Award, start-up packages from
Discussion about this post